
University of Illinois at Urbana-Champaign Metals Processing Simulation Lab Chunsheng LI

Ideal Mold Taper Prediction 
for Continuous Casting

Ideal Mold Taper Prediction 
for Continuous Casting

Chunsheng LI
Mechanical & Industrial Engineering Department

University of Illinois at Urbana-Champaign



University of Illinois at Urbana-Champaign Metals Processing Simulation Lab Chunsheng LI

Presentation OutlinePresentation Outline

� Introduction
� Background
� Model Methodology & Validation
� Results and Discussion
� Implementation

� Introduction
� Background
� Model Methodology & Validation
� Results and Discussion
� Implementation



University of Illinois at Urbana-Champaign Metals Processing Simulation Lab Chunsheng LI

Introduction
-- Physical Process
Introduction
-- Physical Process

• Fluid Flow

• Heat transfer

• Solidifying process

• Thermal stress and 
strain development
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-- Mold Taper Definition
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Introduction
-- Problem to be solved
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Background
-- Why is mold taper important?
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-- Why is mold taper important?

� Too little taper:
- Decreasing heat flow
- High surface temperature
- Thin shell at mold exit

Leading to:
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- Longitudinal cracks
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“gutters” on off-corner 
region of wide face.
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� Too much taper
- Excessive mold wear
- Shell deformation and     
distortion
- High friction and binding 
of the shell in the mold

Leading to:
- Transverse cracks
- Breakouts 

� Too much taper
- Excessive mold wear
- Shell deformation and     
distortion
- High friction and binding 
of the shell in the mold

Leading to:
- Transverse cracks
- Breakouts 

** Inadequate and excessive taper conditions are not mutually exclusive, since taper 
can be too high in some places and not enough in others
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Model MethodologyModel Methodology

� Finite Element Method to solve transient, 
piecewise coupled heat transfer and thermal stress 
model featured elastic-viscoplastic constitutive 
equation. 

� 1D slice domain (element size: 0.1 mm)
� Temperature dependent material properties 
� Non-equilibrium phase diagram for solidifying 

model of carbon steels
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Model Methodology
-- Phase Diagram

Model Methodology
-- Phase Diagram

Other compositions in 
carbon steels:

Mn - 1.52%
S - 0.015%
P - 0.012%
Si - 0.34%
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Model Methodology
-- TLE

Model Methodology
-- TLE

•Liquid data from: Jimbo & 
Cramb, Met. Trans. B, 24B, 
1993, 5-10
•Solid data for plain carbon steel 
from: Harste, Jablonka & 
Schwerdtfeger, 4th Int. Conf. On 
Continuous Casting, CRM, 
1988, Brussels, 633-644
• 304 stainless steel data from: 
Thermophysical Properties of 
Materials. Curve 28-32, pp1151-
1152.
• 430 stainless steel data from: 
Thermophysical Properties of 
Materials. Curve 52, pp1151-
1152.Temperature (Degree)
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Model Methodology
-- Casting conditions

Model Methodology
-- Casting conditions
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Model Validation
-- Heat Transfer Model

Model Validation
-- Heat Transfer Model

� Using constant shell surface temperature case.
- analytical solution:

� Using constant shell surface temperature case.
- analytical solution:

)(25.3)(

:_
4.1494),(

:

)(1000
0048.0

4329.756),(

:

mmtts

ThicknessShell
CTtxT

liquid

C
t

xerftxT

solid

o
m

o

=

==

+�
�

�
�
�

�=



University of Illinois at Urbana-Champaign Metals Processing Simulation Lab Chunsheng LI

Model Validation
-- Heat Transfer Model (continued)

Model Validation
-- Heat Transfer Model (continued)
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• Lines: Boley & 
Weiner’s analytical 
solution*
• Symbols: CON2D 
computation results

* J. H. Weiner and B. A. 
Boley, J. Mech. Phys. 
Solids, 1963, Vol. 11, 
pp145-154
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Model Validation
-- Thermal Stress Model

Model Validation
-- Thermal Stress Model

� Elastic perfect plastic constitutive model used in  Boley & 
Weiner’s analytical solution.

� Elastic perfect plastic constitutive model used in  Boley & 
Weiner’s analytical solution.
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Model Validation
-- Thermal Stress Model (continued)

Model Validation
-- Thermal Stress Model (continued)
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Stress and Plastic Strain Histories (0.003%C)Stress and Plastic Strain Histories (0.003%C)
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Thermal Strain and Total Strain Histories 
(0.003%C)

Thermal Strain and Total Strain Histories 
(0.003%C)

Distance from Meniscus (mm)

Y
To

ta
lS

tra
in

(%
/m

)

0 500 1000-2.5

-2.25

-2

-1.75

-1.5

-1.25

-1

-0.75

-0.5

-0.25

0

20 MJ/m2

40 MJ/m2

60 MJ/m2

80 MJ/m2

Distance from Meniscus (mm)

Th
er

m
al

St
ra

in
(%

)

0 500 1000-2.5

-2

-1.5

-1

-0.5

0

20 MJ/m2

40 MJ/m2

60 MJ/m2

80 MJ/m2



University of Illinois at Urbana-Champaign Metals Processing Simulation Lab Chunsheng LI

Carbon Content EffectCarbon Content Effect
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CON1D vs. CON2D Taper PredictionsCON1D vs. CON2D Taper Predictions
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CON1D vs. CON2D Taper Predictions(Cont.)CON1D vs. CON2D Taper Predictions(Cont.)
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ConclusionsConclusions
� Thermal strain profiles dominate the ideal taper 

profiles.
� Higher heat removal leads to larger thermal strain 

and larger mold taper in consequence.
� Phase transform generates stress and plastic strain 

which have important effects on the ideal mold 
taper.

� Ideal taper is not linear. It increases faster near 
meniscus.

� Heat transfer model cannot predict ideal taper 
accurately without thermal stress analysis.
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Future WorkFuture Work

� Stainless Steel
� Considering ferrostatic pressure (Effects of existing 

mold taper on ideal taper prediction)
� 2D model study

- effects of element size on results
- effects of time step on results

� More accurate temperature dependent material 
properties.
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Background
-- Scaling analysis
Background
-- Scaling analysis
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Background
-- Scaling analysis (continued)

Background
-- Scaling analysis (continued)

� Direction through the shell thickness is the most 
important so that the other two can be neglected.

� Heat transfer model can be simplified into a 1D 
problem.

� Thermal stress analysis depends on the heat transfer 
results, therefore, it can also be simplified to a 1D 
problem.
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