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| ntroduction

-- Physical Process
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| ntroduction
-- Mold Taper Definition
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e Mold Taper:
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| ntroduction

-- Problem to be solved

e What istheideal mold taper for:
- different steels
plain carbon steel

stainless steel

- different casting conditions
casting speed
heat flux consumption rate
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Background

-- Why is mold taper important?

e Too little taper: e Too much taper
- Decreasing heat flow - Excessive mold wear
- High surface temperature - Shell deformation and
- Thin shell at mold exit distortion

- High friction and binding

L eading to: of the shell in the mold
- Bulging
- Longitudinal cracks L eading to:
- Longitudinal depression or - Transverse cracks
“gutters’ on off-corner - Breakouts
region of wide face.

** |nadequate and excessive taper conditions are not mutually exclusive, since taper
can be too high in some places and not enough in others
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Model Methodology

Finite Element Method to solve transient,
plecewise coupled heat transfer and thermal stress
model featured elastic-viscoplastic constitutive
equation.

1D dlice domain (element size: 0.1 mm)
Temperature dependent material properties
Non-equilibrium phase diagram for solidifying
mode! of carbon steels
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Model Methodology

-- Phase Diagram

Other compositionsin
carbon steels:
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Model Methodology

-- TLE

Liquid datafrom: Jimbo &
Cramb, Met. Trans. B, 24B,
1993, 5-10

«S0lid datafor plain carbon steg
- from: Harste, Jablonka &

- Mushy Zone Schwerdtfeger, 4™ Int. Conf. O
- Continuous Casting, CRM,

- oorY 4 1988, Brussels, 633-644

= » 304 stainless steel data from:
Thermophysical Properties of
882222@ Materials. Curve 28-32, ppl15
0.1%C 1152.

PN * 430 stainless steel data from:
430 SS Thermophysical Properties of
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Model Methodology

-- Casting conditions
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Model Validation

-- Heat Transfer M odel

e Using constant shell surface temperature case.

- analytical solution:

solid :

T(x,t) = 756.4329rf (

liquid :

+1000(°C)

X
0.00484t j

T(x,t) =T, =1494.4°C

Shell _Thickness:
s(t) = 3.25y/t (mm)
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Model Validation

 Lines. Boley &
Weiner’s analytical
sol ution*

e Symbols. CON2D
computation results
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Model Validation

-- Thermal Stress Model

e Elastic perfect plastic constitutive model used in Boley &
Welner’'s analytical solution.
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Model Validation

-- Thermal Stress Model (continued)

 Lines. Boley &
Weiner’s analytical
sol ution*
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Stress and Plastic Strain Histories (0.003%C)
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Thermal Strain and Total Strain Histories
(0.003%C)
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Carbon Content Effect
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CON1D vs. CON2D Taper Predictions
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CON1D vs. CON2D Taper Predictions(Cont.)
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Conclusions

Thermal strain profiles dominate the ideal taper
profiles.

Higher heat removal leadsto larger thermal strain
and larger mold taper in conseguence.

Phase transform generates stress and plastic strain
which have important effects on the ideal mold
taper.

|deal taper isnot linear. It increases faster near
meni scus.

Heat transfer model cannot predict ideal taper
accurately without thermal stress analysis.
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Future Work

Stalnless Stedl

Considering ferrostatic pressure (Effects of existing
mold taper on ideal taper prediction)

2D model study

- effects of element size on results
- effects of time step on results

More accurate temperature dependent material

properties.
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Background

-- Scaling analysis

Meniscus
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Background

-- Scaling analysis (continued)

e Direction through the shell thickness is the most
Important so that the other two can be neglected.

e Heat transfer model can be simplified into a 1D

problem.

e Thermal stress analysis depends on the heat transfer
results, therefore, it can also be smplified to a1D

problem.

( University of Illinois at Urbana-Champaign

Metals Processing Simulation Lab

Chunsheng LI )




