Effects of Clogging, Argon Injection and Casting Conditions on Flow Rate and Air Aspiration in Submerged Entry Nozzles

Hua Bai and Brian G. Thomas

Acknowledgments

Continuous Casting Consortium (CCC)

Allegheny Ludlum, (Brackenridge, PA) Columbus Stainless (South Africa) LTV Steel (Cleveland, OH) Armco Inc. (Middletown, OH),

- Inland Steel Corp. (East Chicago, IN),
- Stollberg, Inc., (Niagara Falls, NY)
- National Science Foundation (Grant #: DMI-98-00274)
- Inland Steel, LTV Steel -- Casting Data
- The National Center for Supercomputing Applications -- CPU time
- AEA technology -- CFX4.2

Outline

- Introduction
- Modeling multiphase flow of liquid steelargon bubbles in slide-gate nozzles
- Development of the model describing interrelated effects of casting conditions, clogging and argon injection
- Effects of clogging (initial and severe)
- Effects on air aspiration (minimum pressure)
- Conclusion

Introduction

- Argon injection into the nozzle is an efficient and widely employed method to reduce nozzle clogging
- Both clogging and argon injection greatly affect flow pattern in nozzle and mold
- Tundish nozzle geometry is one of the few variables that is both very influential on the continuous casting process and relatively inexpensive to change
- Casting operation variables are interrelated

Schematic of Continuous Casting Tundish, Nozzle, and Mold

Continuous Casting Consortium University of Illinois at Urbana-Champaign

Computational Domain and Boundary Conditions

Simulation Conditions

Variable	Value	Notes	
Casting Speed V _c	0.2, 0.5, 1, 1.5, 2.0, 2.3	For 8"x52"	
(m/min)		slab	
Gate Opening F _L	40, 50, 60, 70, 100	Linear opening	
(%)			
Argon Flow Rate Q _G	0, 5, 10	"cold" argon	
(SPLM)			
Nozzle Bore Diameter	60, 70, 78, 90	Also simulates	
D _B (mm)		clogging	

Definitions of Slide-Gate Opening and Their Conversions

Liquid Steel-Argon Bubble Multiphase Flow Model

- "Multi-fluid" Eulerian multiphase model
 - » one solution field for each phase
- Coupling achieved through inter-phase drag between liquid and gas bubbles.
- K-ε model for turbulence
- Validated with velocity measurements using PIV on a 0.4 scale water model and reported on
 - » H. Bai and B.G. Thomas, "Two Phase Flow in Tundish Nozzles During Continuous Casting of Steel" (Paper presented at Materials Processing in the Computer Age III, TMS Annual Meeting, Nashville, TN, 2000).

Argon Distribution in Nozzle

Volume fraction of liquid steel

Flow Pattern in Nozzle

Pressure Distribution in Nozzle

Bernoulli's Equation

(1) Apply Bernoulli's Equation on A and B:

or

$$P_{A} + \frac{1}{2}\rho U_{A}^{2} + \rho g Z_{A} = P_{B} + \frac{1}{2}\rho U_{B}^{2} + \rho g Z_{B}$$

$$0 + 0 + \rho g H_{T} = P_{B} + \frac{1}{2}\rho U_{B}^{2} + 0$$

$$H_{T} = \frac{P_{B} + \frac{1}{2}\rho U_{B}^{2}}{\rho g}$$
(2) Nozzla pressure drop AP = P = P

(2) Nozzle pressure drop $\Delta P = P_B - P_C$ (3) Apply Bernoulli's Equation on C and D:

$$P_{C} + \frac{1}{2}\rho U_{C}^{2} + \rho g Z_{C} = P_{D} + \frac{1}{2}\rho U_{D}^{2} + \rho g Z_{D}$$

Or

$$P_{c} + \frac{1}{2}\rho U_{c}^{2} + 0 = 0 + 0 + \rho g H_{subm}$$

 $P_c = \rho g H_{subm} - \frac{1}{2} \rho U_c^2$ Combining (1),(2) and (3) gives Tundish Bath Depth

$$H_T = \frac{\Delta P + \rho g H_{subm} + \frac{1}{2} \rho (U_B^2 - U_C^2)}{\rho g}$$

Continuous Casting Consortium University of Illinois at Urbana-Champaign

Multivariable Curve Fitting Model for Tundish Bath Depth

$$H_{T} = (a_{1}V_{C}^{2} + a_{2}V_{C} + a_{3})(a_{4}F_{L}^{2} + a_{5}F_{L} + a_{6})$$

$$(a_{7}Q_{G} + a_{8})(a_{9}D_{B}^{3} + a_{10}D_{B}^{2} + a_{11}D_{B} + a_{12})$$
@ $F_{L} \leq 60\%$

$$H_{T} = (a_{13}V_{C}^{2} + a_{14}V_{C} + a_{15})(a_{16}F_{L} + a_{17})$$
$$(a_{18}Q_{G} + a_{19})(a_{20}D_{B}^{3} + a_{21}D_{B}^{2} + a_{22}D_{B} + a_{23})$$

 H_T -- Tundish bath depth, V_C -- Casting speed, F_L -- Gate opening, Q_G -- Argon flow rate, D_B -- Nozzle bore diameter @ $F_{I} \ge 60\%$

Effect of Argon Injection on Casting Speed

Casting Speed, Gate Opening and Tundish Bath Depth Relation

Casting Speed, Gate Opening and Tundish Bath Depth Relation

Comparison of Model Predictions with Plant Measurements

Schematic of Initial Clogging and Rounded Edges in Vicinity of the Slide-Gate

Effects of Initial Clogging and Rounded Edges

Effects of Initial Clogging and Rounded Edges on Flow Pattern

Effects of Clogging or Nozzle Bore Size

Effects of Clogging or Nozzle Bore Size

Curve Fitting for Minimum Pressure in Nozzle

Multivariable Curve Fitting Model for Minimum Pressure in Nozzle

$$P_{L} = (b_{1}V_{C}^{2} + b_{2}V_{C} + b_{3})(b_{4}F_{L} + b_{5})$$
$$(b_{6}Q_{G} + b_{7})(b_{8}D_{B}^{3} + b_{9}D_{B}^{2} + b_{10}D_{B} + b_{11})$$
$$@ F_{L} \le 70\%$$

$$P_{L} = (b_{12}V_{C}^{2} + b_{13}V_{C} + b_{14})(b_{15}F_{L} + b_{16})$$
$$(b_{17}Q_{G} + b_{18})(b_{19}D_{B}^{3} + b_{20}D_{B}^{2} + b_{21}D_{B} + b_{22})$$

 P_L -- Minimum pressure in nozzle, V_C -- Casting speed, F_L -- Gate opening, Q_G -- Argon flow rate, D_B -- Nozzle bore diameter @ $F_L \ge 70\%$

Effects of Casting Conditions on Air Aspiration

Casting speed (Vc) and argon injection volume fraction (fg)

Casting speed (Vc) and argon injection volume fraction (fg)

Casting speed (Vc) and argon injection volume fraction (fg)

Gate opening FL(%)

Gate opening FL(%) 70 @HT=0.6m 52 54 56 58 60 @H⊤=0.8m 48 50 52 @H_T=1.0m 48 44 46 @H_T=1.2m 40 42 44 @H_T=1.4m 42 38 40 @H_T=1.6m 34 36 38 15 Casting speed Vc =1m/min Lowest pressure in nozzle PL(kPa) Nozzle bore diameter DB=78mm H⊤=0.6m 10 Tundish bath depth: HT 5 H⊤=0.8m 0 -5 H⊤=1.0m H⊤=1.2m -10 HT=1.4m H⊤=1.6m -15 6 8 ¹⁰ Q_G(SLPM) 2 Δ 0 fg(%,hot) 10 8 12 14 2 6 4 2 3 fg(%,cold)

Argon injection flow rate (QG) and volume fraction (fg)

Gate opening FL(%)

Argon injection flow rate (QG) and volume fraction (fg)

Minimum Argon Flow Rate Required to Eliminate Air Aspiration in Nozzle

Minimum Argon Flow Rate Required to Eliminate Air Aspiration in Nozzle

Observations

• Clogging

- The clogging condition (Clogging Index) can be detected by comparing the measured steel flow rate to the theoretical value.
- Initial clogging may enhance the flow due to a potential streamlining effect before it becomes great enough to restrict the flow channel.

Argon Injection

- Increasing argon injection may help to reduce air aspiration by increasing the minimum pressure below the slide gate.
- » More argon is needed at intermediate casting speeds and in deeper tundishes.
- » Less argon is needed during shallow tundish and low casting speed conditions in order to avoid detrimental effects on flow pattern.
- » Less argon is needed at high casting speed, when the slide gate is open wider and the potential for air aspiration is less.
- The optimal argon flow rate depends on the casting speed, tundish level, nozzle bore diameter, and its influence on flow pattern in mold

Observations

Operation Variables' Relation

- A small change in bath depth causes a larger change in casting speed at low casting speed than it does at high casting speed
- To maintain a constant low casting speed, a larger change in gate opening is needed to compensate for small changes in bath depth than maintaining a constant high casting speed
- For a fixed tundish bath depth, increasing argon injection will slightly slow down the casting speed unless the gate opening increases to compensate
- For a fixed tundish bath depth, casting speed is the most sensitive to gate opening changes at very large openings (F_L>90%) and in the intermediate range of gate opening (F_L=40%~60%).

Effects of Port Shape

Effect of Port Angle

Effect of Bubble Size

Effect of Gate Opening

Continuous Casting Consortium University of Illinois at Urbana-Champaign

Two Jets on Each Port

Comparing One Overall Jet with Two Separate Jets

	Left Port			Right Port		
Jet mode	Two	-jets	One-jet	Two-jets		One-jet
Jet	Upward jet	Downward jet	Overall one-jet	Upward jet	Downward jet	Overall one-jet
Vertical jet angle	21.65° upward	8.30° downward	4.55° downward	20.59° upward	7.86° downward	2.41° downward
Jet speed (m/s)	0.56	0.81	0.76	0.67	0.87	0.81
Horizontal jet angle *	-4.70°	1.86°	1.06	-1.43	2.89	2.09
Back flow zone fraction			8.3%			20.1%
Area fraction of port occupied by jet	34.0%	57.7%	91.7%	31.3%	48.6%	79.9%
Liquid flow fraction carried by jet	8.7%	48.1%	56.8%	9.2%	34.0%	43.2%
Jet gas fraction	61.5%	10.9%	25.8%	61.3%	11.7%	30.7%
Gas flow fraction carried by jet	35.8%	15.1%	50.9%	37.5%	11.6%	49.1%