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Outline

� Introduction
� Modeling multiphase flow of liquid steel-

argon bubbles in slide-gate nozzles
� Development of the model describing 

interrelated effects of casting conditions, 
clogging and argon injection

� Effects of clogging (initial and severe)
� Effects on air aspiration (minimum pressure)
� Conclusion
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Introduction

� Argon injection into the nozzle is an efficient and 
widely employed method to reduce nozzle clogging

� Both clogging and argon injection greatly affect flow 
pattern in nozzle and mold

� Tundish nozzle geometry is one of the few variables 
that is both very influential on the continuous casting 
process and relatively inexpensive to change

� Casting operation variables are interrelated
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Schematic of Continuous Casting Tundish, Nozzle, and Mold
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Computational Domain and 
Boundary Conditions

Liquid Inlet from tundish
normal liquid velocity = constant
K=constant
ε =constant
Liquid volume fraction =1

Gas Injection
normal gas velocity = constant
Argon volume fraction =1
      

Outlets (both ports)
pressure = constant
zero normal gradients 
for velocities, K and ε

Tundish Well (Nozzle Top)

UTN(Upper Tundish Nozzle)

Slide-Gate Opening

SEN(Submerged Entry Nozzle)

Nozzle Ports

Shrould Holder
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Simulation Conditions

Variable Value Notes

Casting Speed  VC

(m/min)

0.2, 0.5, 1, 1.5, 2.0, 2.3 For 8”x52”

slab

Gate Opening  FL

(%)

40, 50, 60, 70, 100 Linear opening

Argon Flow Rate QG

(SPLM)

0, 5, 10 “cold” argon

Nozzle Bore Diameter

DB (mm)

60, 70, 78, 90 Also simulates

clogging
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Definitions of Slide-Gate Opening and Their Conversions
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Liquid Steel-Argon Bubble
Multiphase Flow Model

� “Multi-fluid” Eulerian multiphase model
» one solution field for each phase

� Coupling achieved through inter-phase drag 
between liquid and gas bubbles.

� K-ε model for turbulence
� Validated with velocity measurements using 

PIV on a 0.4 scale water model and reported on
» H. Bai and B.G. Thomas, "Two Phase Flow in Tundish Nozzles During 

Continuous Casting of Steel" (Paper presented at Materials 
Processing in the Computer Age III, TMS Annual Meeting, Nashville, 
TN, 2000).
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Argon Distribution in Nozzle
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Flow Pattern in Nozzle

Fe 
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Pressure Distribution in Nozzle
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Bernoulli’s Equation

TundishH
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Hsubm

∆P = PB - PC      

(1) Apply Bernoulli’s Equation on A and B:

Or

(2) Nozzle pressure drop  ∆P = PB - PC       

(3) Apply Bernoulli’s Equation on C and D:

Or

Combining (1),(2) and (3) gives
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Multivariable Curve Fitting for Tundish Bath Depth
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Multivariable Curve Fitting Model 
for Tundish Bath Depth

FL ≤ 60%

FL ≥ 60%

@

@
HT   -- Tundish bath depth,   
VC   -- Casting speed,      FL   -- Gate opening , 
QG  -- Argon flow rate, DB -- Nozzle bore diameter

HT = a1VC
2 + a2VC + a3( ) a4 FL

2 + a5FL + a6( )
a7QG + a8( ) a9 DB

3 + a10 DB
2 + a11DB + a12( )

HT = a13VC
2 + a14VC + a15( ) a16FL + a17( )

a18QG + a19( ) a20DB
3 + a21DB

2 + a22DB + a23( )
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Effect of Argon Injection on Casting Speed
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Casting Speed, Gate Opening and Tundish Bath Depth 
Relation
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Casting Speed, Gate Opening and Tundish Bath Depth 
Relation
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Comparison of Model Predictions 
with Plant Measurements
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Schematic of Initial Clogging and Rounded Edges 
in Vicinity of the Slide-Gate
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Effects of Initial Clogging and Rounded Edges
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Effects of Initial Clogging and Rounded Edges 
on Flow Pattern

Sharp edge     Round edge    Initial clogging       More initial
(a)                      (b)                     (c)                         (d)

clogging
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Effects of Clogging or Nozzle Bore Size

0

20

40

60

80

100

50 60 70 80 90 100

G
at

e 
op

en
in

g 
F

L
 (%

)

Nozzle bore diameter D
B
(mm)

H
T
=0.6m

H
T
=0.8m

H
T
=1.0m

H
T
=1.2m

H
T
=1.4m

H
T
=1.6m

Tundish bath depth: H
T

Argon injection Q
G
=10SLPM

Casting speed V
C
=1m/min for 8"x52" slab



Continuous Casting Consortium     University of Illinois at Urbana-Champaign

Effects of Clogging or Nozzle Bore Size
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Curve Fitting for Minimum Pressure in Nozzle
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Multivariable Curve Fitting Model 
for Minimum Pressure in Nozzle

PL = b1VC
2 + b2VC + b3( ) b4FL + b5( )

b6QG + b7( ) b8 DB
3 + b9 DB

2 + b10DB + b11( )

PL = b12VC
2 + b13VC + b14( ) b15FL + b16( )

b17QG + b18( ) b19DB
3 + b20 DB

2 + b21DB + b22( )

FL ≤ 70%

FL ≥ 70%

@

@PL   -- Minimum pressure in nozzle,   
VC   -- Casting speed,      FL   -- Gate opening , 
QG  -- Argon flow rate, DB -- Nozzle bore diameter
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Effects of Casting Conditions on Air Aspiration
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Effect of Argon Injection on Air Aspiration in Nozzle
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Effect of Argon Injection on Air Aspiration in Nozzle
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Effect of Argon Injection on Air Aspiration in Nozzle
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Effect of Argon Injection on Air Aspiration in Nozzle
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Minimum Argon Flow Rate Required to Eliminate Air Aspiration in Nozzle
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Minimum Argon Flow Rate Required to Eliminate Air Aspiration in Nozzle
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Observations

� Clogging
» The clogging condition (Clogging Index) can be detected by 

comparing the measured steel flow rate to the theoretical value.
» Initial clogging may enhance the flow due to a potential streamlining 

effect before it becomes great enough to restrict the flow channel. 

� Argon Injection
» Increasing argon injection may help to reduce air aspiration by 

increasing the minimum pressure below the slide gate.  
» More argon is needed at intermediate casting speeds and in deeper

tundishes.  
» Less argon is needed during shallow tundish and low casting speed 

conditions in order to avoid detrimental effects on flow pattern. 
» Less argon is needed at high casting speed, when the slide gate is 

open wider and the potential for air aspiration is less.  
» The optimal argon flow rate depends on the casting speed, tundish

level, nozzle bore diameter, and its influence on flow pattern in mold
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Observations

� A small change in bath depth causes a larger change in casting 
speed at low casting speed than it does at high casting speed

� To maintain a constant low casting speed, a larger change in 
gate opening is needed to compensate for small changes in bath 
depth than maintaining a constant high casting speed 

� For a fixed tundish bath depth, increasing argon injection will 
slightly slow down the casting speed unless the gate opening 
increases to compensate

� For a fixed tundish bath depth, casting speed is the most 
sensitive to gate opening changes at very large openings 
(FL>90%) and in the intermediate range of gate opening 
(FL=40%~60%). 

Operation Variables’ Relation
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Effects of Port Shape
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Effect of Port Angle
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Effect of Bubble Size
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Effect of Gate Opening
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Two Jets on Each Port

Je
t d

iv
is

io
n 

lin
e

Je
t d

iv
is

io
n 

lin
e

z,w

y,v
z,w

y,v

z,w
y,v x,u

Back flow 
   zone

Upward jet

Downward jet

Left port view Right port view



Continuous Casting Consortium     University of Illinois at Urbana-Champaign

Comparing One Overall Jet with Two Separate Jets

Left Port Right Port
Jet mode Two-jets One-jet Two-jets One-jet

Jet Upward
jet

Downward
jet

Overall
one-jet

Upward
jet

Downward
jet

Overall
one-jet

Vertical jet angle 21.65°
upward

8.30°
downward

4.55°
downward

20.59°
upward

7.86°
downward

2.41°
downward

Jet speed  (m/s) 0.56 0.81 0.76 0.67 0.87 0.81

Horizontal jet
angle *

-4.70° 1.86° 1.06 -1.43 2.89 2.09

Back flow zone
fraction

8.3% 20.1%

Area fraction of
port occupied

by jet

34.0% 57.7% 91.7% 31.3% 48.6% 79.9%

Liquid flow
fraction carried

by jet

8.7% 48.1% 56.8% 9.2% 34.0% 43.2%

Jet gas fraction 61.5% 10.9% 25.8% 61.3% 11.7% 30.7%

Gas flow fraction
carried by jet

35.8% 15.1% 50.9% 37.5% 11.6% 49.1%


